Extensions of interpolation between the arithmetic-geometric mean inequality for matrices
نویسندگان
چکیده
In this paper, we present some extensions of interpolation between the arithmetic-geometric means inequality. Among other inequalities, it is shown that if A, B, X are [Formula: see text] matrices, then [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are non-negative continuous functions such that [Formula: see text] and [Formula: see text] ([Formula: see text]). We also obtain the inequality [Formula: see text] in which m, n, s, t are real numbers such that [Formula: see text], [Formula: see text] is an arbitrary unitarily invariant norm and [Formula: see text].
منابع مشابه
Interpolating between the Arithmetic-Geometric Mean and Cauchy-Schwarz matrix norm inequalities
We prove an inequality for unitarily invariant norms that interpolates between the Arithmetic-Geometric Mean inequality and the Cauchy-Schwarz inequality.
متن کاملA Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality
Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.
متن کاملCommentary on "Toward a Noncommutative Arithmetic-geometric Mean Inequality: Conjectures, Case-studies, and Consequences"
In their paper, Recht and Ré have presented conjectures and consequences of noncommutative variants of the arithmetic mean-geometric mean (AM-GM) inequality for positive definite matrices. Let A1, . . . , An be a collection of positive semidefinite matrices and i1, . . . , ik be random indices in {1, . . . , n}. To avoid symmetrization issues that arise since matrix products are non-commutative...
متن کاملA Determinantal Inequality for the Geometric Mean with an Application in Diffusion Tensor Imaging
We prove that for positive semidefinite matrices A and B the eigenvalues of the geometric mean A#B are log-majorised by the eigenvalues of A1/2B1/2. From this follows the determinantal inequality det(I + A#B) ≤ det(I + A1/2B1/2). We then apply this inequality to the study of interpolation methods in diffusion tensor imaging.
متن کاملBest Upper Bounds Based on the Arithmetic-geometric Mean Inequality
In this paper we obtain a best upper bound for the ratio of the extreme values of positive numbers in terms of the arithmetic-geometric means ratio. This has immediate consequences for condition numbers of matrices and the standard deviation of equiprobable events. It also allows for a refinement of Schwarz’s vector inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017